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We obtain some smoothness properties for the metric projection that hold for a
large class of proximinal subspaces. As a consequence of this and various other
results. we establish the proximinality of U( S, G) in U( S, Xl. 0 < p ";Xc, for a
wide class of proximinal subspaces G in X. Thus generalizing many previously
known results. ,'f 1995 Academic Press. rnc.

1. INTRODUCTION

Throughout this paper, (S, I:, Il-) is a finite measure space, X is a Banach
space in which the norm is denoted by 11·11, and G is a closed subspace of
X. For 0 <p::::; ex, LP(S, X) is the space of p-Bochner-integrable functions
defined on S with values in X. For / E LP( S, X) one has

_{[ f 11/(s)II P dll-l
1iP

;II/lip - ,
ess.sup 11/(s)ll;

O<p<ex

A subset F of a Banach space E is said to be proximinal in a subset A
of E if, for each x E A, there exists at least one element y E F such that

Ilx - yll = d(x, F) = inf{ Ilx - gil, g E F}.

The element y is called a best approximation of x in F.
If G is proximinal in X, then the metric projection is the set valued map

n: X -+ 2G defined by

n(x) = {gE G: Ilx-gll =d(x, G)}.

If n(x) is a singleton for each x E X, we say that G is Chebyshev in X.
Let G be proximinal in X. Several authors investigated sufficient condi­

tions for the proximinality of U(S, G) in U(S, X), d. [1], [2], [3], [4]
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and [6]. Intuition tells one that LP(S, G) should be proximinal in LP(S, X)
without any additional condition. However, any serious attempt would
reveal that the problem has no easy answer.

In this paper, we find some common characteristics (c.f. Theorem 3.1)
implied by many existing sufficient conditions for the proximality of
LP( S, G) in LP( S, X). Furthermore, we show that these common charac­
teristics are sufficient for LP(S, G) to be proximinal in LP(S, Xl, hence
leading to a common proof for many previously established results, c.f.
Theorems 4.1, 4.2, 4.3 and Remark 4.1. Among these characteristics we find
that the mapping ljJ:X---+[O, 00) defined by ljJ(x)=d(O,n(x)) is lower
semicontinuous.

Before we continue, we want to mention the fact that we could not find
an example of a proximinal subspace G in a Banach space X for which the
mapping ljJ is not lower semicontinuous.

In section 5 we extend some of the results to "Factor LP-spaces."

2. NOTATIONS AND DEFINITIONS

This section deals with the notations and definitions that we will adopt.
For x E X and A c X we set

d(x, A) = inf{ Ilx-all, aEA}

and

n(x) = {g E G: IIx - gil = d(x, G)},

where n: X ---+ y; is the metric projection.
We also set

G= {XEX: d(x, G) = Ilxll},

B = {g E G: II g II ~ 1},

and, for g E G and r E (0, 00),

B(g, r)= {YEG: Ily-gil ~r}.

(2.1 )

(2.2)

(2.3 )

(2.4 )

Given a function f: S ---+ X and a subset Yin G, we let ep/ S ---+ 2G be
defined by

epj(S) = n(f(s)), (2.5)
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t/J: X -> [0, (0) be defined by

t/J( x) = d( 0, n( x) ),

and t/J y: X -> [0, oc) be defined by

t/J y(x) = d( Y, n(x))

where d( Y, n(x)) :=inf{d(y,g): yE Y,gEn(x)}. We note that
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(2.6)

(2.7)

(2.8)

We now introduce some definitions to which we refer throughout this
paper.

DEFINITION 2.1. We say that G is convexly approximatively compact in
X if, for every nonempty closed convex subset A of G and every x E X with
d(x, A)=d(x, G), there exists gEA such that Ilx-gll =d(x, G).

DEFINITION 2.2 [1]. G is said to have the C-property in X if: Given a
closed and separable subspace Yin G, x E X, and rl, r2 E (0, ex;) with r, ~ r 2
and Ilx-g 1 11=d(x,B(O,rl))=d(x,YnB(O,r2)) for some glEB(O,rll,
there exists g2E YnB(O, r 2) such that Ilx-g211 = Ilx-g111·

DEFINITION 2.3 [6]. Let G be a closed subspace of the Banach space X.
The pair (G, Xl is said to have property (HV) if there exists a linear
topology r on X such that

(i) X is Hausdorff with respect to r, and G is r-closed in X.

(ii) The unit ball in G is r-compact and metrizable.

(iii) Every r-compact set in G is proximinal in X.

DEFINITION 2.4. G is said to be locally proximinal in X if the closed
unit ball B in G is proximinal in X.

Remark 2.1. G is locally proximinal in X if and only if every closed ball
in G is proximinal in X.

3. ON THE SMOOTHNESS OF THE METRIC PROJECTION

First, we establish some properties for the mappings t/J and t/J y defined
by (2.6) and (2.7) respectively.

Let G and B be as in (2.2) and (2.3) respectively. Then we have:
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LEMMA 3.1. Let G be proximinal in X and let Y be a nonempty closed
convex subset in G. Then the following statements hold true:

(i) t/I is lower semicontinuous if and only if t/I ;; I (0) is closed.

(ii) Y+Gct/lyl(O)c Y+G=t/ly'(O).

Proof (i) Suppose that t/J is lower semicontinuous and let X n~ x with
X n E t/J;; '(0). Since t/J is lower semicontinuous, we have

d(O, n(x)) :( lim inf d(O, n(xn )) :( I.

Therefore XEt/J;;l(O) and consequently t/J;;I(O) is closed. Conversely,
suppose that t/J;; '(0) is closed and let X n ~ x, X E X. Also, suppose that
t/J(x) > lim inft/J(xn ) =p and let a=(l/2)(p+t/J(x)). Noting that a>O and
that t/J(x/a) = (l/a) t/J(x) > 1 we obtain, along a subsequence, that

(xn/a) ~ (x/a), (xn/a) E t/I;; 1(0) for large n, and (x/a) rt t/J;; '(0).

Thus contradicting the fact that t/J;; 1(0) is closed.

(ii) The first inclusion follows from the definitions of G and t/I y.

The equality is a direct consequence of the two inclusions. Now let
xEt/lyl(O). Then, there exists {Yn} c Y and {gn} cn(x) such that
Ily" - g" II ~ 0 and, consequently, y" + (x - g,,) ~ x. Since J'" + (x - g,,) E
Y + G, we obtain that x E Y + G, hence establishing the claim and completing
the proof of the lemma. I

COROLLARY 3.1. Let G be proximinal in X.
Then the following statements hold true:

(i) If B + G is closed then t/J is lower semicontinuous.

(ii) If t/I is lower semicontinuous then

B+GcB(O, 1+I:)+G, for all I: > 0,

Proof (i) This follows directly from (ii) and (i) in Lemma 3.1.

(ii) Let I: > 0 be given. Since t/I is lower semicontinuous we have, by
Lemma 3,1,

B+G=t/J;;'(O)=t/I-I[O, IJcB(O, I +I:)+G. I

Before stating our main theorem for this section, we establish the
following preliminary result:

LEMMA 3.2. Let G be a proximinal subspace of X and suppose that
( Y n B) + G is closed for every closed separable subspace Y of G. Then
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B + G is closed and, Y + G is closed for every closed separable subspace Y
ofG.

Proof Let {XII} be a sequence in B + Gthat converges to some element
XEX and, for each n, let g"En(xlI)nB. Then Y:=span{g,,} is a closed
separable subspace of G and {XII} C ( Y n B) + Gwhich is closed. Therefore
X E ( Y n B) + Gc B + G. Hence B + G is closed.

Now let {x,,} be a sequence in Y + G that converges to some element
X E X and, for each n, let gil E n(x,,) n Y. Then, since d(x, G) is a continuous
function of x,

lim IIx - gil II = lim Ilx" - g" II = lim d(x", G) = d(x, G).

Therefore {gil} is bounded and consequently there exists r > °such that
{gIl} c B(O, r) n Y. This, together with the fact that B(O, r) = rB(O, I) := rB,
Y = rY and G= rG, implies that

X n E [Y n B(O, r)] + G= r[ (Y n B) + G].

But ( Y n B) + G (hence r[ ( Y n B) + G]) is closed. Therefore

xE[YnB(O,r)]+Gc Y+G

and consequently Y + Gis closed. This ends the proof of the lemma. I
We now proceed with our main result for this section:

THEOREM 3.1. Let G be a proximinal subspace of X. Then any of the
following conditions is sufficient in order that Ij; be lower semicontinuous and
B + G be closed:

( I ) G is convex~v approximatively compact in X.

(2) G is reflexive.

(3) G has the C-property in X.

(4) span G is reflexive.

(5) G is locally proximinal in X.

(6) X is a dual space and G is wk*-closed in X.

(7) The pair (G, X) has property (HV).

Moreover, if any of conditions (1 )-(4) holds then Y + G is closed for
every closed separable subspace Y of G.

Proof We divide the proof into two parts:

Part I. If any of conditions (I H 4) hold: It is sufficient to prove that
( Y n B) + G is closed for every closed separable subspace Y of G. Indeed,
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for in that case we obtain by Lemma 3.2. that B + G is closed (hence by
Corollary 3.1. I/J is lower semicontinuous) and Y + G is closed for every
closed separable subspace Y of G.

So let Y be a closed separable subspace of G and let {x n } be a sequence
in ( Y n B) + G that converges to some element x E X. We need to show that
x E(Y n B) + G or, equivalently, that nIx) n (Y n B) i= 0. For each 11, let
gn En(xn)n ( Y n B). Then

I\x-g"I!----*d(x, G)

and consequently, since {g,,} c ( Y n B) c G,

d(x, Y n B) = d(x, G).

(3.1 )

(3.2 )

Hence, if condition (1) holds then, since Y n B is a nonempty closed
convex subset of G, nIx) n ( Y n B) i= 0. This completes the proof for
condition (I).

Suppose that condition (2) holds. Then, by [8, Corollary 2.2, p. 384],
every nonempty closed convex subset of G is proximinal. Hence condition
(1) holds and consequently the proof for condition (2) is complete.

Now let gjEn(x) and let r=max{I,21Ixll}. Then, by (3.2) and [8,
p. 140], we have

and d(x, YnB)=d(x, B(O, r))= Ilx-glll =d(x, G).

Hence, if condition (3) holds then, since B = B( 0, 1) and 1:( r, there
exists g2 E Y n B such that Ilx - gzll = Ilx - gl II = d(x, G). This implies that
g EnIx) n ( Y n B) and consequently nIx) n ( Y n B) i= 0. This ends the
proof for condition (3). __

Finally, suppose that condition (4) holds. Since {x" - gn} c Gc span G
which is reflexive, there exists a subsequence {x nk - gnJ that converges
weakly to an element of X. But X"k converges strongly (hence weakly) to
x and {gnk} c ( Y n B) which is closed and convex hence weakly closed in
X, [10, p. Ill]. Therefore {gnJ converges weakly to an element
g E( Y n B). This, with (3.1) and the fact that 11·11 is weakly lower semi­
continuous, [5, p. 345], implies that g En(x) n ( Y n B) and consequently
nIx) n (Y n B) i= 0. This finishes the proof for condition (4).

The proof of part I is now complete.

Part II. If any of conditions (5 H 7) hold: In this case it is sufficient
to prove that, if condition (5) holds then B + G is closed. Indeed: It follows
immediately from (ii) and (iii) of Definition 2.3 that if condition (7) holds
then condition (5) holds. Also by [8, Corollary 2.2, p. 384], it follows that
if condition (6) holds then conditions (5) holds. Finally, if B + G is closed
then, by Corollary 3.1, I/J is lower semicontinuous.
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So, suppose that condition (5) holds and let {xn} he a sequence in B + G
that converges to some element XE X. Then ljJ(xn ) n B # 0. Consequently
we have, since d(x, B) and d(x, G) are continuous functions of x,

d(x, B) = lim d(xn , B) = lim d(xn , G) = d(x, G).

This, together with condition (5), implies that there exists g E B such that

Ilx-gll =d(x, B)=d(x, G).

Hence g E n(x) n B and consequently x E B + G. Therefore B + (; is closed.
This completes the proof of the theorem. I

4. PROXIMINALITY OF LP(S, G) IN LP(S, Xl

In this section we prove that, for 0 <p ~ 00, U(S, G) is proximinal in
LP( S, X) whenever G satisfies certain conditions. In the remainder of this
paper (S, L:, JI) is a finite measure space.

We start with the following definitions:

DEFINITION 4.1 [7]. A function f: S ~ X is said to be simple if its range
contains only finitely many points X I'X 2' ... ,X" in X, and if f-I(.x;) is
measurable for i = 1, 2, ..., n.

DEFINITION 4.2 [7]. A function(: S -> X is said to be strongly measurable
if there exists a measurable subset N in S of measure zero (Jl( N) = 0), and a
sequence {!,,} of simple functions such that for every s E S\N we have

DEFINITION 4.3 [7]. A set valued mapping l/>: S -> 2£, where E is a
subset of X, is said to be weakly measurable if l/>-I((}) is measurable in S
whenever () is open in E. Where l/> -I ({}) = {s E S: l/>(s) n () # 0}. We note
that if l/> is single-valued, then the weak measurability is equivalent to the
measurability in the classical sense.

We now state our result that will allow us to get rid of the separability
assumption on G.

LEMMA 4.1. Suppose that G is proximinal in X and that, for every closed
and separable subspace Y of G, Y + G is closed. Then, given any strongly
measurablefunctionf: S -> X, there exists a closed and separable subspace Yr
of G such that

for a.e. s E S.
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Proof Since f is strongly measurable, it follows, by [7, p. 115], that
range (f) is essentially separable, i.e. there exists a null set N(f.-l(N) =0) in
S such thatf(S\N) is separable. Let {x,,} be a dense sequence inf(S\N)
and, for each n, let g" E n(x,,). Then Y/= span{g,,} is a closed and
separable subspace of G an consequently, by assumption, Yf+ G is closed.
Also, since g" E n(x,,) n Y/ for every n, we have {x,,} c Yr+ G. Therefore,
since {x,,} is dense in f(S\N) and Yr+ G is closed, we obtain that

f(S\N) eNc Yr+ G
and, consequently,

n(f(s)) n Y/# 0 for a.e. s E S. I

The following lemma is needed for the proof of Theorem 4.1.:

LEMMA 4.2. Let G be a proximinal subJpace of X. Suppose that there
exists a positive constant R ~ 1 such that

B+ GcB(O, R) + G.

Then, for every g E G and every r E (0, 00), we have

B(g, r) + Gc B(g, Rr) + G.

Proof Let r > 0 be given. Since

B(g,r)=g+rB(O,I)=g+rB

we have

and G=rG, (4.0)

B(g, r) + G=g+rB+rG=g+r(B+G).

Hence we obtain, from (4.0) and the assumption, that

B( g, r) + G= g + r( B + G) c g + r( B(0, R) + G= B( g, Rr) + G. I

We are now ready to state and prove our result concerning the
proximinality of U(S, G) in U(S, X):

THEOREM 4.1. Let G be a proximinal subspace of the Banach space X
and n(x) be the set of best approximations to x in G. Then for 0 <p ~ 00,

U(S, G) is proximinal LP(S, X), if the following two conditions hold:

(I) There exists a positive constant R ~ I such that

B+ GcB(O, R) + G.
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(2) For every / E L"(S, X), there exists a closed separable subspace Y
0/ G such that

n(/(s)) n Y # 0 for a.e. .I' E S.

Proof Let / E LI'( S, X). Then / is strongly measurable. By assumption,
there exists a closed and separable subspace Y of G and a null set N 1 in
S(I'(N 1 ) =0) such that

n(f(s))n Y#0

By [7, Lemma 10.5], there exists a null set N 2 in S such that

/( S\N1) is a separable subset of X.

Also, by [6, Lemma 2], there exists a null set No in S such that

f: S\NJ -> X is weakly measurable.

Since .r represents an equivalence class of functions (the equivalence
relation being "equality a.e.") we may assume, without loss of generality,
that /( .1') = 0 for all .I' E N I U N 1 uNo. Then f: S -> X is strongly and weakly
measurable, has separable range in X and, since 0 E Y,

n(f(s))n Y# 0 for all .I' E S. (4.1 )

Assume for now that the mapping cP I defined by (2.5) admits a strongly
measurable selection g: S -> G. Then

g(s) E n(f(s)) for a.e. .I' E S, (4.2)

and consequently, by [8, Theorem 6.1(b)],

Ilg(s)11 ~ 211/(.1')11 for a.e. .I' E S.

Hence, since / E U( S, Xl, we obtain that g E U( S, G) and, by (4.2), that

{
. }l.j,

II/ - hilI' = t 11/(.1') - h(s)11 Pdp (=ess.sup li/(s) - h(s)11 if P = ex)

~ {J, il/(s) - g(sW' dP } IiI' (~ess.sup 'U(s) - K(s)',1 if p =ex)

= il/-gl',p,

for every hE LI'( S, G).
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Therefore g is a best approximation of1 in LP(S, G) and consequently,
since 1 is arbitrary in U(S, X), we obtain that LP(S, G) is proximinal in
U(S,X).

To finish the proof of the theorem, we need to show that the mapping
CPr admits a strongly measurable selection.

Consider the set-valued mapping qJ: S -+ 2 Y defined by

qJ(S) = n(f(s)) (\ Y = CPf(s) (\ Y. (4.3)

Then, by (4.1), qJ(s) is a nonempty closed subset of Y for every s E S.
Hence, since Y is a separable Banach space, if we prove that qJ is weakly
measurable then, by the Kuratowski-Ryll-Nardzewski measurable selection
theorem [7, p. 133], qJ and consequently, by (4.3), CPr would admit a
weakly measurable selection g: S -+ G with range contained in Y. This, with
[7, Lemma 10.3] and the fact that Y is separable, would imply that g is
also a strongly measurable selection for CPf which would complete the proof
of the theorem.

Therefore, to complete the proof of the theorem, we now prove that qJ

is weakly measurable:
Let () be an open set in Y and let R be as given in assumption (I) of the

theorem. Since Y is separable, there exists a sequence {g,,} e () and a
sequence {r,,} e (0, if)) such that

(4.4)

"

We have, since Be Y,

qJ - I un = {s E S: qJ( s) (\ B to 0}

= {s E s: n(f(s)) (\ () to 0}

= {s E s: I(s) E B+ G}

=1-1(B+G).

But, by (4.4) and Lemma 4.2, we have

"

"
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Therefore, we obtain

qJ-l(fJ) =f-l {y [B(g", r,,) + G)}

=U {f- I [B(g",rI1)+G]}.

"

215

Consequently, since f: S~ X is weakly measurable and (B(g", r,,) +G) is
closed for all n, we obtain that qJ-l((}) is measurable. The proof of the
theorem is now complete. I

Remark 4.1. We note that if G is separable, then condition (2) of
Theorem 4. I is automatically satisfied. We also note that if tit is lower semi­
continuous then, by Corollary 3. I, condition ( I ) of Theorem 4. I is satisfied.
Therefore LP(S, G) is proximinal in LP(S, X), if G is separable and t/t is
lower semicontinuous.

Finally we note that condition (2) of Theorem 4. I is a necessary condi­
tion for LP(S, G) to be proximinal in LP(S, X), I ~p < 00. Indeed: If
f E U( S, X) has a best approximation h in LP( S, G) then h is strongly
measurable and, by [7, p. 115], there exists a null set N in S such that
h(S\N) is separable. Let {gl1} c h(S\N) be dense in h(S\N) and let
Y= span{g,,}. Then Y is a closed separable subspace of G and

h(S\N) c Y.

This, with [6, Corollary 2], implies that

n(/(s)) n Y,e 0 for a.e. s E S.

Several old and new results can be obtained as corollaries of Theorem
4.1. We only include some of them in our next theorem:

THEOREM 4.2. Let G be a proximinal subspace of X. Then, for
a<p ~ 00, LP(S, G) is proximinal in LP(S, Xl, if one of the following
assumptions holds:

(1) G is convexly approximatively compact in X.

(2) G is reflexive.

(3) G has the C-property in X.

(4 ) span G is reflexive.

(5) G is separable and locally proximinal in X.

(6) X is a dual space and, G is II· II-separable and Wk *-closed in X.

(7) Gis II· II-separable and the pair (G, X) has property (HV).
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Proof We only need to check that, if any of the above assumptions
holds, then conditions ( I ) and (2) of Theorem 4.1 hold.

For assumptions (1 )-( 4), it follows from Theorem 3.1 that

B + G is closed

and that, for every closed separable subspace Y of G,

Y+ G is closed.

(4.5)

(4.6)

From (4.5) we obtain that condition (I) of Theorem 4.1 holds and, from
(4.6) and Lemma 4.1, we obtain that condition (2) of Theorem 4.1 holds.
This ends the proof for assumptions (1 H 4).

For assumptions (5)-(7), if follows from Theorem 3.1 that equation (4.5)
holds and consequently condition (I) of Theorem 4.1 holds. Since in
assumptions (5 )-( 7) G is II· II-separable, we obtain directly that condition
(2) of Theorem 4.1 holds.

This completes the proof of the theorem. I

Finally, we close this section by giving a single condition that implies the
proximinality of U(S, G) in U( S, X), given that Gis proximinal in X. We
have:

THEOREM 4.3. Let G be a proximinal sub"pace of X. Then, for
0< p ~x;, L"( S, G) is proxilllinal in L"(S, X), ({ ( Y n B) + G is closed for
ever.v closed separable sub.\pace Y of G.

Proof From the assumptions and Lemma 3.2 we obtain that equations
(4.5) and (4.6) hold. From equation (4.5) we obtain that condition (1) of
Theorem 4.1 holds and, from equation (4.6) and Lemma 4.1, we obtain
that condition (2) of Theorem 4.1 holds. This completes the proof. I

5. FURTHER RESULTS

In this section S will denote the unit real interval and 11 is the Lebesgue
measure. For 1~p < 00, we introduce the following Banach spaces which
will be called "Factor L" -spaces":

Lg(S, X)=X,

L::(S, X) = U(S, L;'_l(S, X)),

For n:;': 1 we introduce the following notations:

n = 1, 2, ....
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The norm in L~(S, X) is denoted by 11·ll p .,,' If L~(S, G) is proximinal in
L~(S, X), then we denote the metric projection by n" and we let
ljJ,,: L~(S, X) ~ [0, (jJ) be defined by

ljJ,,(/) = d,,(O, n,,(/)),

where d" denotes the distance in L~(S, X).
Also, for n ~ 1, we set

B" = {gE L;:(S, G): Ilgll p ." ~ I}
and

G" = {fE L;:(S, X): d,,(j~ L;:(S, G)) = Ilfll p .,,}.

For n =°we keep the same notations introduced in Sections 1 and 2.
Before we proceed, we note that Lf(S, X) = U( S, X) and that
11·llp.l = II· lip.

We now state our theorem concerning the proximinality of L;,(S, G) in
L;;(S, X):

THEOREM 5.1. Let G be a separable Chebyshev subspace of X and let
1~ p < Cf:.;. Suppose that ljJ is lower semicontinuous. Then, for every n ~ 1, we
have

(i) L;,(S, G) is separable and Chebyshev in L;,(S, X).

(ii) t/J" is lower semicontinuous.

(iii) B" + G" is closed.

Proof We prove this by induction:

Case 1: n = I. (i) The proximinality of L;:(S, G) in L~(S, X) follows
from Remark 4.1. Since S is the unit real interval and G is separable,
the separability of Lf(S, G) follows by routine computations. The
Chebyshevity of Lf(S, G) in Lf( S, X) now follows from [6, Corollary 2]
and the Chebyshevity of G in X.

(ii) Let fELf(S,X) and let {J,,}cLf(S,X) be such that
Ilf" - flip. 1 ---n+ 0. Then there exists a subsequence U;,J such that

for a.e. s E S.

Therefore, since t/J is lower semicontinuous and G is Chebyshev, we have

Iln(/(s))11 ~ lim inf Iln(/"k(s))II
k

for a.e. s E S. (5.1 )
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By [6, Corollary 2J and the fact that G and Lf(S, G) are Chebyshev in X
and Lf(S, X) respectively we have, for every hE Lf(S, X),

[nJ(h)J(s) =n(h(s)) for a.e. s E S.

Hence, since nl(ll)ELf(S, G), n(h(s)) is a strongly measurable function of
s and we have

hE Lf(S, X).

This, together with (5.1), implies that

~ lim inff II n(f".( s)) II dfJ.
k S

Noting that the above holds true if the sequence {I,,} is replaced by any
subsequence to start with, we obtain

Iln l (f)lIp . I ~ lim inf Ilndf,)ll p . I

"
or, in other words,

I/I\(f) ~lim infl/l\(f,,).
"

Therefore 1/1 J is lower semicontinuous.

(iii) Since 1/11 is lower semicontinuous we obtain, by [5, p. 40J, that
1/1 II [0, I J is closed.

But, since Lf(S, G) in Chebyshev in Lf(S, X), we have

t/J;-I[O, IJ = {fELf(S, X): Ilnl(f)lf:( l}

= {IE Lf(S, X): nl(f)EBd

=B J +G\.

Therefore, B I + (j J is closed.
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Case II: n ;?: 2. By case I, all the assumptions on G that were sufficient
to establish case I are carried through to Lf(S, G). Hence case II follows
directly by induction. This completes the proof of the theorem. I
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